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Abstract

Matrix multiplication is a fundamental operation in numerous computational domains. Many work has
been done to implement general matrix multiplication accelerator, such as UCB’s Gemmini [7]. However, the
accelerator doesn’t support sparse matrix multiplication, which is very common in modern workloads like ML.
This project proposed a sparse matrix multiplication accelerator inspired by Wang et al.’s SADD architecture [12].

1 Introduction
Matrix multiplication is a fundamental operation in numerous computational domains, for example, machine learn-
ing, simulations, and data analytics. Its efficiency and performance are critical for the scalability and speed of these
applications. Moreover, many real-world datasets and models are inherently sparse. This highlights the importance
of support for sparse matrix multiplication in modern accelerators.

The Berkeley Rocket Core [3] is a 5-stage in-order scalar processor core generator. It was originally developed
at UC Berkeley and SiFive and is now maintained by Chips Alliance. In this project, we created a matrix (Ma)
multiplication accelerator (MA) for the Rocket core. Due to the short time frame, we decided to implement our
sparse matrix multiplication accelerator on the Gemmini DNN accelerator [7], which already has an implemented
matrix multiplication unit but no sparse support.

Gemmini uses the Rocket Custom Co-Processor Interface (RoCC) [5] for interfacing with the CPU core. Since
our project is based on the Gemmini project, we inherited the Gemmini ISA, allowing easy benchmarking using
existing Gemmini c libraries and Scala unit testing support. This approach creates a tightly coupled accelerator
that only de-couples from the Rocket core during the execution stage. Moreover, the Chipyard framework gives us
access to a high-level flexible RTL coding style, enabling us to test our design under various configurations.

Our sparse matrix multiplication accelerator architecture is heavily inspired by the SADD architecture Want et
al. purposed [12]. The architecture focuses on a compression algorithm for compressing sparse matrices and a mesh
design that allows for out-of-order processing of compressed sparse matrices.

In our project’s final deliverable, we implemented a sparse matrix multiplication accelerator that achieved a 1.2x
performance gain for sparse matrix multiplication operations and, along with the existing Gemmini dense matrix
multiplication support, achieved a 1.05x performance gain overall.

2 Related Work
Much work has been done investigating the potential wider use, or even commercialization of an open source ISA
like RISC-V [2] [8]. Rocket is one such implementation of RISC-V [6]. However, vanilla Rocket is designed to handle
general CPU workloads. With the rise of edge image processing and edge AI applications [11], there is a need for
an accelerator to perform matrix multiplication fast on the edge. In this section, we will look at the work others
have done in this area.

Wang et al. [13] [14] examined a scalable RISC-vector accelerator for DNN applications, SPEED. Compared
to the pioneer open-source vector processor Ara, SPEED provides an area efficiency improvement of 2.04× and
1.63× under 16-bit and 8-bit precision conditions, respectively, showing SPEED’s significant potential for efficient
multi-precision DNN inference.

Perotti et al. [9] build off the RISC-V Vector Extension ISA to optimize the energy efficiency of matrix mul-
tiplication operations for low-power embedded systems. This is primarily achieved by minimizing access to the
vector register file using a broadcast engine and tile buffers. This also has the effect of producing a more consistent
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memory access pattern. The MX ISA adds minimal instructions to configure the processor for matrix arithmetic,
highlighting a unique approach that minimizes the need for tightly coupled accelerators or dedicated matrix units
to support matrix operations.

Jing et al. [10] proposed that RISC-V ISA Extension supports matrix register files, which store N2 elements per
register. This adds another dimension to vector registers and allows execution units or tightly coupled accelerators
to simply grab matrices as operands in an instruction, allowing a single instruction to execute N3 operations. The
downside to this approach is that it is costly regarding register file space and adds complexity to load/store units.
The cost of holding this data in registers means a high degree of tiling is required in the case of large matrices. This
proposed ISA extension would offer an alternative way of handling data for the goals of our project, as registers can
be shared between the Rocket Core and RoCC accelerator. However, developers of Rocket have yet to implement
the Vector ISA Extension, meaning this would involve extensive modification to the Rocket core itself.

Researchers at UC Berkeley had many experiences creating RoCC accelerators for Rocket/BOOM. Most notably,
Genc et.al [7] created the Gemmini accelerator. Gemmini is a DNN accelerator that works to improve convolution
operations using a systolic array TPU-like approach. Gemmini implements its own ISA extension for the accelerator,
can be configured with a variable number of processing elements, and can operate in a weight-stationary or output-
stationary mode. Such configuration options allow it to be set up for matrix multiply operations and could allow
us to test our own accelerator’s performance against it to validate our results.

Finally, we want to mention Wang et al.’s work [12] on creating a matrix multiplication accelerator with sparse
support. Their work includes adding a systolic array accelerator that supports sparsity and dynamic dataflow on
top of general matrix multiplication (GEMM) accelerators. The architecture first focuses on a Group-Structure-
Maintained Compression (GSMC) compression algorithm for compressing sparse matrices, allowing higher data
transfer bandwidth. The architecture also combines different dataflow types and allows dynamic configurations.
They achieved 2× performance gain compared to Google’s TPU on AlexNet, with little space overhead. This paper
heavily inspires the accelerator we create in the project.

3 Methodology
3.1 Chipyard
Chipyard is a framework for designing and evaluating full-system hardware using agile workflows commonly not
found in HDL development but in higher-level projects like Java projects. It is composed of a collection of tools
and libraries designed to provide an integration between open-source and commercial tools for the development of
systems-on-chip [1].

In our project, we elected to use Chipyard as it provides us with the tools to get off the ground with much ease.
For example, tools like Spike (a RISC-V simulator), Verilator (a Verilog simulator, described in more detail below),
RISC-V build tools, and Scala testing framework (sbt, described in more detail below).

Modules within Chipyard, also called “generators”, are written in Chisel. Chisel is a domain-specific language
(DSL) based on Scala. Working with Chisel presents several benefits that allow for more agile and modular hardware
generator code. More examples will be discussed in subsection 3.4. Chisel, along with the Scala language’s testing
framework, also allows for JUnit-like testing and easy waveform generation, allowing for software development-like
debugging, significantly reducing much of the traditional hardware SDK development overhead. More details will
be discussed in section 3.3.

3.2 Verilator
Verilator is an open-source cycle-accurate Verilog simulator. During our implementation, it is used to generate
waveform files for debugging. During testing, it is used to provide performance results.

3.3 Scala Unit Tests
A significant advantage in the development of this project was the flexibility offered by the Scala framework. Scala
allows us to create robust test benches for our Chisel generators with extreme ease. These test benches not only
produced results similar to Java JUnit tests but also generated waveform files, which are invaluable for debugging the
HDL code. By leveraging Scala’s powerful features, we were able to adopt a software-development-like development
cycle, with rapid testing and rapid development, significantly improved development turnaround time compared to
traditional hardware development like in CprE 381, CprE 487, and CprE 488.
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It is worth noting that this testing framework allows for CI/CD in hardware development, something unthinkable
when doing traditional VHDL development using languages like VHDL and frameworks like the Xilinx Vitis/Vivado.

3.4 Chisel Quality of Life Features
Chisel [4], being a higher-level HDL generator language, also provides many quality-of-life features. Such features
simplified many of the tedious wire management that exists in traditional HDL coding. For example, AXI trans-
action management in VHDL is a tedious process, Chisel provided special classes that simplify that and allow for
cleaner code [Chisel Docs]. Listing 1 is an example of such class Decouple. Any signals defined with Decouple
automatically have the standard read-valid interface.

1 class MeshWithDelays[...](...) extends Module {
2 ...
3

4 val io = IO(new Bundle {
5 val a = Flipped(Decoupled(A_TYPE))
6 val b = Flipped(Decoupled(B_TYPE))
7 val d = Flipped(Decoupled(D_TYPE))
8

9 val req = Flipped(Decoupled(new MeshWithDelaysReq(accType , tagType.cloneType , block_size)))
10

11 val resp = Valid(new MeshWithDelaysResp(outputType , meshColumns , tileColumns , block_size, tagType.
cloneType))

12

13 val tags_in_progress = Output(Vec(tagqlen , tagType))
14 })
15 ...
16 }

Listing 1: Chisel Decouple example

Other quality-of-life features exist; for example, Chisel’s Bundle and Vec allow users to easily define groups
of signals [Chisel Docs]. Such features simplify signal creation and generate higher readability code. Many other
Chisel quality-of-life features exist and can be found on Chisel’s documentation site.

4 Design
4.1 Gemmini Architecture

Figure 1: Gemmini’s core – mesh and tiles [7]

This sub-section provides a quick summary of the Gemmini architecture as described in [7]. In its core, as shown
in figure 1, Gemmini has a systolic array (called mesh), and within a mesh, “tiles” contain PEs that perform the
calculation of partial sums. Finally, Gemmini has an accumulator that collects and accumulates results before
writing them back to memory. Gemmini is capable of dynamically changing between weight stationary (WS) and
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input stationary (IS) dataflows. This is reflected in the different configurations in individual PEs as shown in the
blue (WS) and pink (IS) boxes in figure 1.

4.2 Matrix compression
As mentioned above, our sparse matrix multiplication accelerator is heavily inspired by the SADD paper [12]. In
the paper, the first step to achieving performance improvement is to compress a matrix using the Group-Structure-
Maintained Compression (GSMC) algorithm. In the paper, this compression operation is completed in hardware.
We accomplished the GSMC compression in software. In our design, the CPU will perform the compression before
sending the compressed input matrix to the accelerator. This is mainly to reduce the workload in an attempt to
complete the implementation on time.

Figure 2: GSMC Compression [12]

Figure 2 shows the GSMC compression algorithm in action. More details are described in [12]. It is worth noting
that every row from the dense matrix produces one group. In the compressed matrix, each row can have multiple
groups. We used a 1-bit tag to signify end-of-group. The compressed matrix is then passed into the accelerator as
shown in figure 3.

Figure 3: Compressed matrix being passed into the systolic array [12]

4.3 Forwarding Logic
The red line arrows in figure 3 show the forwarding logic. The 1-bit end-of-group tag is used to determine if a group
computation is complete and ready to be written back to memory. Details of the forwarding logic are shown in
figures 4a and 4b. SADD PEs require additional MUXes (figure 4b) on top of normal, non-SADD, PEs (figure 4a).
The 1-bit end-of-group tag directly drives the two MUXes.
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(a) Normal PE [12] (b) SADD PE [12]

Figure 4: Comparison of PE methods

To implement forwarding on top of the gemmini architecture, two muxes were inserted between tiles and pipeline
registers to either forward partial sums to a queue and pass zeros down a column or propagate partial sums down
the column as normal, depending on the tag of the input. Gemmini’s scratchpad and accumulator memory banks
are set up to read and write rows of data at a time to reduce complexity in the design. To allow writebacks to take
place as normal, forwarded rows are tagged with the current matrix multiply instruction, buffered, and written to
the scratchpad after the systolic array completes. This means that output rows of compressed matrix multiplies
are written to the scratchpad or accumulator memory out-of-order.

Figure 5: Mesh Response with Forwarding

Gemmini’s execution controller issues requests to a module called MeshWithDelays, this module is responsible
for sending control signals to the systolic array, keeping track of matrix multiply writeback addresses, and issuing
a response when the computation is complete. (figure 5) shows how forwarded data is inserted into a queue and
written into the response once the systolic array has finished writing.

4.4 Metadata Handling
Gemmini is a type-generic accelerator, which allows us to define our own data types and arithmetic operations
to further explore and interact with our design. We created our own ”SparseInt” datatype to hold some meta
information that persists alongside data throughout the computation (figure 6). Currently, we use a 16-bit integer
along with 16-bit metadata. The 1-bit end-of-group tag mentioned above is part of the 16-bit metadata. In addition
to the 1-bit end-of-group tag, the metadata also consists of tags signaling the row and column or the element from
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the original dense matrix. These tags allow us to manage forwarding from software and understand the ordering of
output rows from a compressed matrix multiply.

Figure 6: SparseInt with metadata

We believe that a smarter compression algorithm and improved management of forwarded data can completely
eliminate the need for row and col tagging, allowing us to reduce the metadata overhead from 16 bits down to 1
bit, which we shall discuss further in section 5: Results.

5 SADD MaMA Evaluation
5.1 Evaluation Methodology
To collect performance results, we created two sets of test code, one with a dense matrix multiplication operation
targeting a single-core Rocket CPU and a CPU with our Gemmini+MaMA accelerator and one with a sparse matrix
multiplication operation targeting a single-core Rocket CPU and a CPU with our Gemmini+MaMA accelerator.

We define ”sparse” as any matrix with > 55% sparsity, which is a reasonable assumption as per [15] [12].
However, for our benchmark, we selected 75% sparsity as a similar benchmark with 75% sparsity used in [12].
The dense matrix multiplication benchmark we used is a matrix multiplication test part of the gemmini-rocc-tests
[GitHub]. We modified the benchmark a little to arrive at our sparse matrix multiplication benchmark with sparsity
of 75%. We used Verilator as the simulation tool.

5.2 Results
Table 2 shows the results we achieved by running our benchmarks. As we can see, the single Rocket core system,
the baseline system, achieved a CPI of 1.5. Performance stays constant between dense and sparse as the CPU core
is indiscriminate against data values.

Configuration CPI
Rocket Core Dense 1.5
Rocket Core Sparse 1.5

Rocket+Gemmini Dense 1.6
Rocket+Gemmini Sparse 1.6

Rocket+SADD Dense 1.6
Rocket+SADD Sparse 1.6

Table 1: Performance Results

Profiling a single Rocket core in addition to a single Gemmini accelerator, we observed a CPI of 1.6 for both
dense and sparse. The indifference in CPI between dense and sparse isn’t surprising, as the reason is the same as
in the single Rocket core case. On the other hand, the decrease in performance with the Gemmini accelerator is
surprising. This can likely be attributed to the difference in source code and the number of instructions issued to the
CPU. For example, to compute a matrix multiply on the core requires many instructions that can be operated on in
parallel, improving CPU utilization. When running Gemmini, the core issues a few instructions to the accelerator,
each representing many operations but taking longer to execute.

Configuration CPI
Rocket+SADD Dense (4x4 Input Matrix) 2.1
Rocket+SADD Sparse (2x4 Input Matrix) 2.0

Table 2: Performance Results
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In addition, our workload requires several setup instructions and potentially misses small performance improve-
ments to the matrix multiply operation between sparse and dense matrices. Another test program, shown in Table
2, profiles the CPI in a finer granularity and showed a slight improvement when looking at sparse matrices that
could be compressed to half the width of dense matrices. We found software tests to be limited as they only rep-
resent the CPI from the perspective of the processor and not the accelerator. Further investigation of performance
differences using Verilator would require the insertion of hardware performance counters in Gemmini or a larger-
scale test dominated by Gemmini instructions. We chose to analyze waveforms produced by unit tests to see how
performance might scale.

Figure 7: Dense Matrix Multiply on a Mesh with 4x4 PEs

Figure 8: Sparse Matrix Multiply on a Mesh with 4x4 PEs

(figure 7) shows a dense matrix multiply operation for our testing setup with Gemmini configured for a 4x4
systolic array of tiles with one PE each. For this operation, 12 cycles of computation are required. (figure 8) shows a
sparse matrix multiply operation on the same setup. In this scenario, the input matrix was compressed to 2x4, and
the first element into the systolic array was tagged to be forwarded. For this operation, 10 cycles of computation
are required. This shows a speedup of 1.2 for sparse input matrices representative of our workload when considering
only the matrix multiply operation.
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(a) Best-Case Compressed Matrix (b) Worst-Case Compressed Matrix

Figure 9: Best/Worst Case Matrix Example

An ideal matrix can be compressed to 1x4, where each element of the first row is representative of its own row
of outputs; this is shown in (figure 9a). However, sparse matrices may not compress ideally as shown in (figure 9b),
in this case, no speedup would be observed. A better speedup can be observed for a systolic array consisting of
more PEs. For an NxN systolic array, we can quantify the number of cycles required to compute a sparse matrix
as:

Min Cycles : 2N + 1

Max Cycles : 3N
Average Cycles : 2N + C

Here, N is the dimensionality of the systolic array, and C is the number of rows an input matrix is compressed
to on average. This shows a greater potential computation speedup when considering large systolic arrays; however,
as the number of PEs grows, so will the wire length on each forwarding path. A deeper investigation into how this
would affect the maximum frequency is required to find an optimal design.

Figure 10: Gemmini ISA instruction specifying rows and columns of a matrix loaded into scratchpad

In the SADD paper [12], Wang et al. discussed the bottleneck of the system lies with systolic array stationary
value replacement and data movement. This is where our SADD modification for Gemmini comes in. We could
potentially improve the bandwidth-bound by using pre-compressed matrices and Gemmini ISA instructions that
load compressed matrices with exact dimensions as shown in figure 10. However, because learning about the
framework took a good chunk of our time, as mentioned above, our initial solution generated significant metadata
overhead, effectively evening out the bandwidth for compressed matrices. Although our final system isn’t fully
developed, it is safe to say little performance gain could be achieved using this approach. However, given more
time, it is possible to reduce metadata overhead from 100% to ≈ 10% by using the 1-bit tag to signify the last
element in a group instead of 16-bits.

6 Future Work/Conclusion
6.1 Future Work
While our partial implementation and analysis of the SADD MaMA demonstrated the feasibility of integrating the
SADD-inspired architecture with Gemmini, there are still some improvements that can be done. The most obvious
task is to fully implement the SADD architecture into the Gemmini, addressing the current metadata overhead by
optimizing the tagging system. Transitioning from a 16-bit to a 1-bit tag, as mentioned above, could significantly
reduce overhead and improve performance.

Another consequence of the current implementation is the software burden of compressing matrices, manag-
ing data forwarding, and reordering output data. Additional control can be utilized to ensure output rows are
reorganized in hardware. One interesting solution to compressing matrices would be in-memory processing. This
may allow us to increase the bandwidth-bound while reducing the software burden of performing the compression
manually. When considering DNN workloads, it could be advantageous to use an input-stationary dataflow and
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compress the weights of a model during training. A training algorithm with knowledge of the GSMC algorithm
could result in increased probably of producing ideally compressed weight matrices. This type of workload would
be ideal for our design.

Additionally, extending our accelerator to support a broader range of sparsity levels and matrix sizes would also
be a good improvement. Beyond simulation, deploying our design on an actual FPGA platform will also allow us
to better analyze space and energy cost/performance, offering insights into the practicality of our SADD MaMA
for a RISC-V core in the real world.

6.2 Conclusion
In this project, we partially integrated a sparse matrix multiplication accelerator inspired by the SADD archi-
tecture into the Gemmini accelerator. Our development leveraged the Chipyard and Gemmini frameworks and
tools, enabling rapid development and initial performance evaluation. Although preliminary results indicated a
bandwidth-bound bottleneck when utilizing the Gemmini accelerator, our work in this project laid a solid founda-
tion for future enhancements. By addressing metadata overhead and completing the full implementation, we expect
significant performance gains, especially for applications with high sparsity. Ultimately, our work contributes to the
ongoing efforts to optimize matrix operations in modern accelerators, paving the way for more efficient and scalable
solutions in machine learning and data analytics.
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Footnote
GitHub repo:

• Chipyard: link

• Gemmini: link

• Gemmini benchmarks: link
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